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Ytterbium ion level scheme
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Sketch of basic experimental setup
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Photo of a Paul-Straube] trap

The trap is made of twisted
Ta wire loop of 1.0 mm
diameter..

The image resolution is limited
by the photon collection Optics




Resolved micro-motion sideband spectrum at 609 nm

370 nm fluorescence
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Micromotion amplitude is reduced to about
10nm after applying external compensation.
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609nm transition has a width of about 4MHz, convemently resolvmg the IIMHZ micromotion
modulation sidebands. In the case, the micromotion amphtude is about 120nm.
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D52 state lifetime measurement

Quantum Jump Signal of a Single Yb* lon
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o Théfhfetl‘me;jof the D5/2 state can be

determined using the quantum jump

‘technique. In this technique,

continuous fluorescence photons are
detected when the ion is in the
ground state. An excitation of the ion
into the Ds, state will quench the
fluorescence completely until it
decays spontaneously back to the
ground state and the fluorescence
resumes.

The on or off state of the
fluorescence signal indicates

whether the ion is in the S, or Ds),
state. The average fluorescence off-
time(dark period) gives the lifetime
of the D5, state. |



D3 state lifetime measurement

The lifetime of D3, in Yb+ ion has been
measured so far only with ion clouds in
buffer gas, a condition not ideal for long
lifetime measurement. It is not obvious
how the measurement can be done with a
single ion because the state is inside the
transition cycle for the normal signal
detection. Our new technique takes
advantage of the fact that the branching
ratio of the Pj, decaying to the ground
state is large, about 200.
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Ratio of photon counts

D32 state lifetime measurement
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Motivations for individual ions in a high-finesse optical cavity

* Standing-wave laser cooling

* CQED in the strong coupling regime, structure and dynamics
* Real time probing of atom CM motion and measurement

* Quantum logic and information processing

. Quantum 1nf0rmat10n dlStI'lbthlOIl and networkmg

* Single ion laser/novel hght source




Trapped individual ions in ﬁélh«fz:Oﬁti'cal. cavity
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Experimental challenges:
* protecting mirror coating, ,
* avoid/circumvent dielectric charge up,

* reducing cavity volume,
* i




Initial exploratory system: special design points

* translatable trap/ion

e collimated atom beam

* collimated/rf-synchronized electron pulse

* separate cooling laser beam and cavity laser beam
* uv access for possible insitu surface discharge

. ring trap
collimating oven
y-z trap translation Colllmated
x.pulsed e-

" . source




Initial exploratory system: experimental goals

Feasibility demonstration:

» effects of atom beam collimation/contamination
» pulsed electron beam ion-loading/surface charge up problem
e ion translation capability, trap stability

* QED cavity locking/stabilization

* possible insitu surface discharge

Interesting physics to investigate:

* sw cooling

* cavity field mapping

* ion orbital size measurement

* laser transmission of occupied cavity

* QND atom state measurement through off resonance phase shift




Future systems: trap-cavity integration I
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Future systems: trap-cavity integration II
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linear trap ion loading and ion addressing
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